

What we are going to cover

DIFFERENT TYPES OF MUSCLES

MUSCULAR ANATOMY

- Muscle Function and Structure
- Special characteristics of muscle tissue
 Muscle contraction and muscle mechanics

THE NERVOUS SYSTEM AND ITS CONNECTION TO STRENGTH

MAJOR MUSCLE GROUPS

- Action and Attachment points
- How to train each Major Muscle Group!

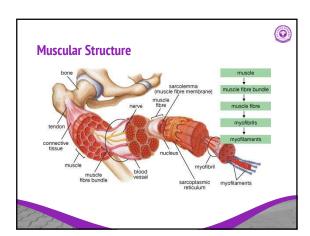
THE FITT PRINCIPLE FOR STRENGTH TRAINING Benefits of resistance training Recommended strength training guidelines

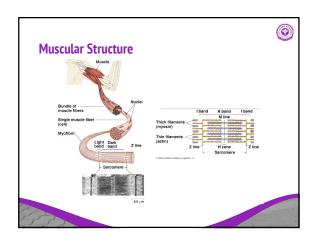
What you need before we start 1. Water 2. Put your finger tips together 3. Take 3 deep breaths

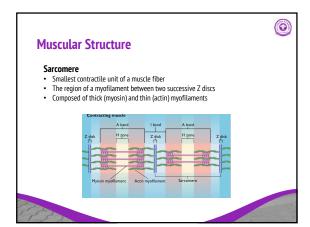
Muscular Anatomy

Muscle Functions

- Movement of bones or fluids


Muscular Anatomy


Special Characteristics of Muscle Tissue


- Special Characteristics or Muscle Tissue
 Excitability: Ability to receive and respond to stimuli
 Contractibility: Ability to shorten when stimulated
 Extensibility: Ability to be stretched
 Elasticity: Ability to recoil to resting length

- Skeletal Muscle
 Each muscle is served by ONE artery, ONE nerve, and One or more veins
 Contains connective tissue
 Over 600 throughout the body

Muscular Contraction Contraction The generation of force Requires energy (ATP) Does not necessarily cause shortening of the fiber Sliding Filament Model of Contraction In the relaxed state, thin and thick filaments overlap only slightly During contraction, myosin heads bind to actin, detach and bind again, to propel the thin filaments toward the M line As H zones shorten and disappear, sarcomeres shorten, muscle cells shorten, and the whole muscle shortens

0

Muscular Contraction

Different types of muscle contraction

- Isotonic muscle changes in length and moves the load

 Concentric the muscle shortens and does work

 - o Eccentric the muscle contracts as it lengthens
- Isometric
 - The load is greater than the tension the muscle is able to develop
- o Tension increases to the muscles capacity, but the muscle neither shortens or lengthens

Different types of muscle fibers

- Slow oxidative fibers needs oxygen, slow to contract long endurance
- Fast oxidative fibers and Fast glycolytic fibers quick, powerful bursts

- · Surrounds each layer of the muscle
- Merge to form tendons or aponeurosis

Principles of Muscle Mechanics Important contractile properties

- Force velocity relationship
- o Highest force is generated at slowest velocity
- Same principle applies to contraction of a single muscle fiber and a whole muscle
- Contraction produces tension, the force exerted on the load or object to be moved
- Contraction does not always shorten a muscle
 Isometric no shortening, muscle tension increases but does not exceed load
 - o Isotonic muscle shortens because muscle tension exceeds the load
- Force and duration of contraction vary in response to stimuli or different frequencies

Principles of Muscle Mechanics

Force of a muscle contraction is affected by:

Number of muscle fibers stimulated

Recruitment

Relative size of the fibers

· Hypertrophy increase strength

Frequency of stimulation

Increased frequency allows time for more effective transfer of tension to non-contractile components

Length- tension relationship

Muscles contract most strongly when muscle fibers are 80 – 120% of their normal resting length

Muscle Fatigue

Muscle Fatigue

- Physiological inability to contract
- Occurs when
 - Ion balances interfere with nervous system stimulus (Na+, K+, Ca+)
 - Prolonged exercise can damage the myofilaments and surrounding structures
- · Total lack of ATP causes contractures (continuous contractions)
 - Occurs rarely, during states of continuous contraction

The Nervous System

Movement requires the nervous system to work with the muscles

- Skeletal muscles are voluntary muscles stimulated and controlled by the brain and the nervous system.
- When you think about moving, your brain decides which muscles are necessary to make that movement happen.
- Electrical impulses are sent via the spinal cord and nerves to the appropriate muscles (Action Potential).
- Once the movement has started, we get feedback which is sent to the brain to process and decide what to do next
- Proprioception
 - O The sense of where one body part is located in relation to others and in relation to gravity.

The Nervous System

A skeletal muscle controls muscle tension by the number of motor units stimulated

Motor Unit

- The nerve-muscle functional unit
 A single motor neuron and all (four to several hundred) the muscle fibers it supplies

Small motor unit

• In muscles that control fine movement (fingers, eyes)

Large motor unit

- In large weight bearing muscles
 Muscle fibers from a motor unit are spread throughout the muscle so that a single motor unit causes weak contraction of an entire muscle Motor units in a muscle usually contract asynchronously
- to help prevent fatigue

0

Strength and Neural Recruitment

- To be strong, you need both muscle mass AND neurological patterning
- When you lift weights regularly, you create new patterns of communication between the brain, nerves, neuromuscular junction, and muscle fibers. Every time you do that movement, those neuro-connections get stronger
- Your absolute strength does depend on your muscle mass but it also depends on your neurological ability to recruit more muscle fibers. You can lift more if you can recruit and fire 50,000 vs. 25,000 fibers.
- Muscle recruitment allows people to get so much stronger in the first few weeks of a new strength training program before increasing the mass of muscle.
- Motor neurons in the muscle and nervous system die as people get older but exercise can reverse that process.

Strength and Neural Recruitment

Sitting around with tons of muscle you don't use would be a waste of energy for your body

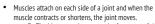
When you start to demand work from your body, it will adapt by:

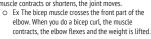
- 1. Changing how your nervous system recruits and activates the muscles (neurological changes)
- 2. Changing the muscles themselves (morphological changes)

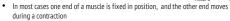
If you don't use it, you lose it!

,		7	•	
r.	8	2	v)	L
	c.	а		

Morphological Changes


Hypertrophy = Getting Bigger!


- Enlargement of stimulated muscles Results from repeated, exhaustive stimulation of skeletal muscle
- Muscle fibers develop more mitochondria, glycolytic enzymes, and larger
- glycogen reserves
 These muscle fibers have more myofibrils and these myofibrils contain more thick and thin myofilaments
- No new muscle fibers are created; they just increase in volume and size Since tension production is proportional to the cross-sectional area of a muscle,


- Atrophy = Getting Smaller

 A skeletal muscles loses mass and tone when it is not regularly stimulated by a motor unit
- Muscle fibers become smaller and weaker

Muscle AttachmentsMuscles attach on each side of a

• Origin

Where a muscle attaches to the bone closest to the center of the body
 Where the fixed end is

Insertion

Where a muscle attaches to bone farthest from the center of the body.

Where the movable end attaches to another structure

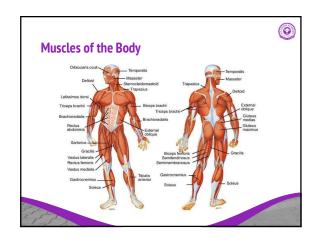
Action

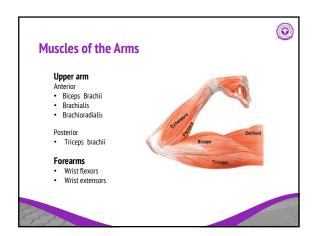
o The specific movement a muscle makes when it contracts

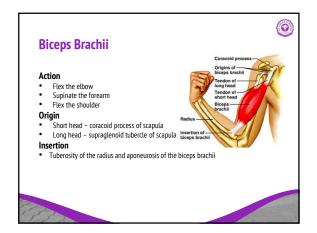
Agonist/Antagonist

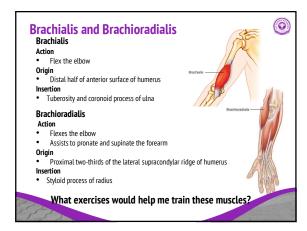
0

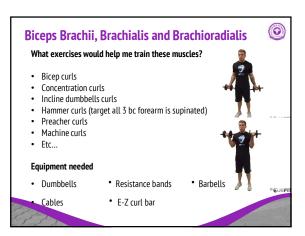
- When a muscle contracts or shortens, it pulls the insertion towards the origin and causes the joint to move.
- With complex movements, muscles work in groups rather than individually. Their cooperation makes a particular movement more efficient.
- To return the joint to its original position, the reciprocal muscle on the other side of the joint must contract and shorten.
- The muscles working together creates a "reciprocal" synergy that is called the agonist/antagonistic system.

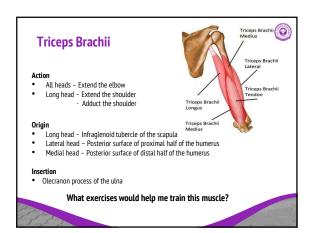

Agonist:

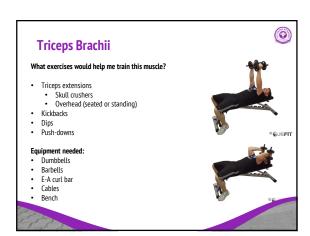

The prime mover mostly responsible for producing a particular movement

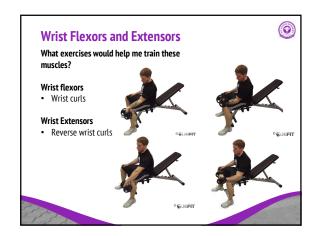

Antagonist:

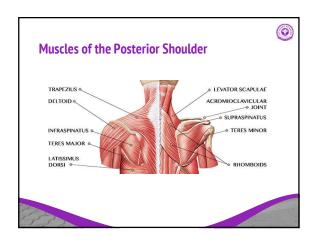

Opposes the movement of the agonist

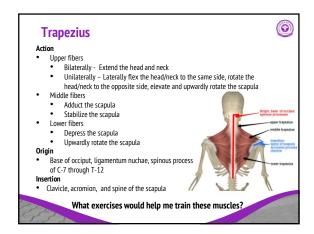

Antagonistic Muscle Groups List Biceps _______ Triceps Service Back _______ Chest Mark Back _______ Chest Mark Abs _______ Lower back Mark Shoulders _______ Chest / Back Mark Quadriceps ______ Fails width _____ Chest / Back Mark Tibialis anterior(shin) ______ Calf muscle Mark Tibialis anterior(shin) ______ Calf muscle Mark Compared to the c

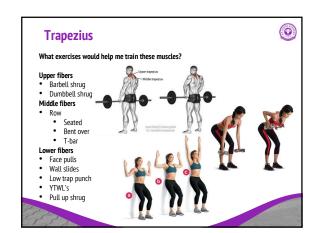


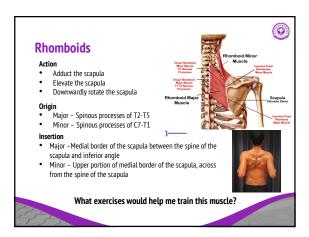


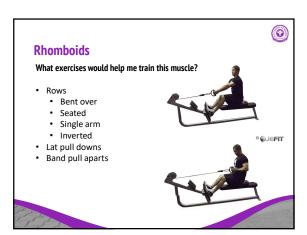


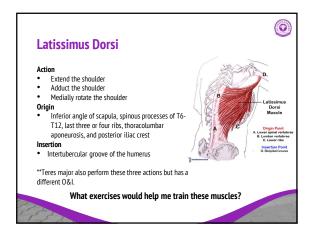


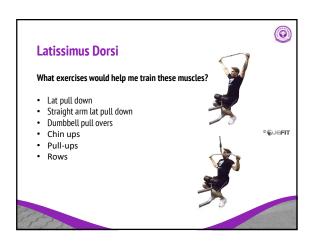


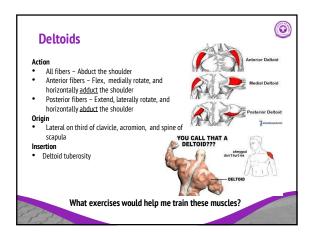


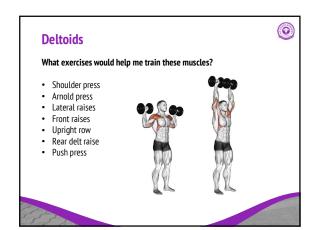


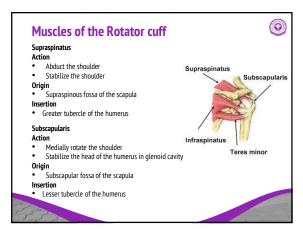


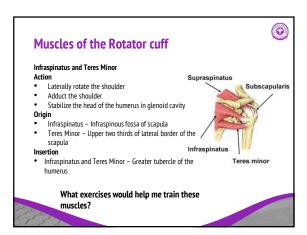


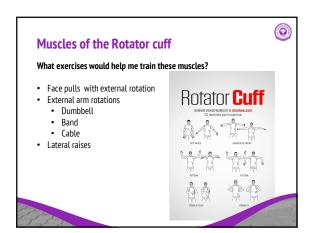


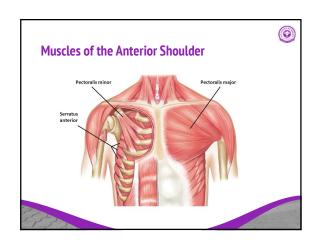


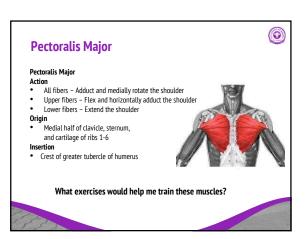


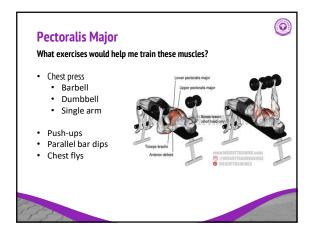


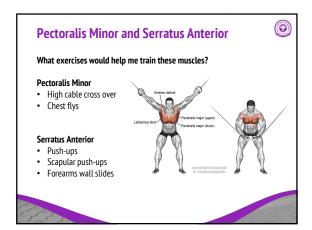


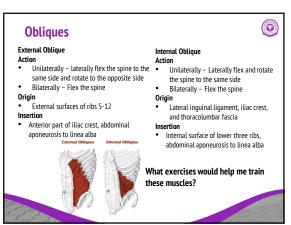


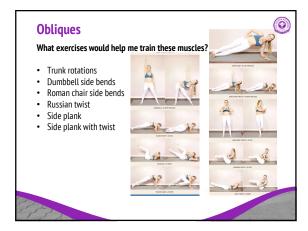




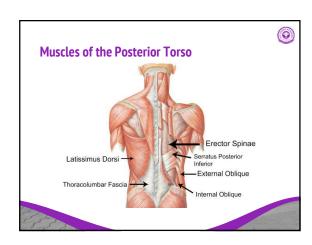


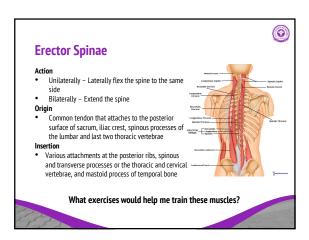


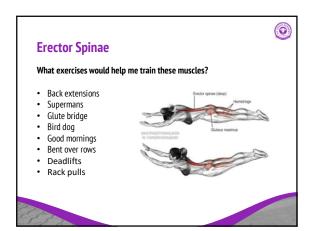

0 **Pectoralis Minor and Serratus Anterior** Pectoralis Minor Serratus Anterior • De Action Ab Abduct the scapula Depress the scapula Upwardly rotate the scapula Depress the scapula Hold the medial border against the rib Abduct the scapula Downwardly rotate the scapula Origin Third, fourth, and fifth ribs cage Origin • External surface of ribs 1-8/9 Medial surface of coracoid process of Insertion • Anterior surface of medial border of the the scapula What exercises would help me train these muscles?

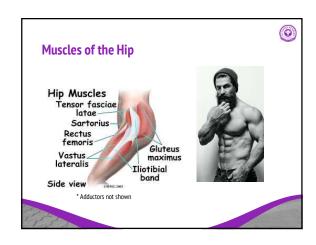


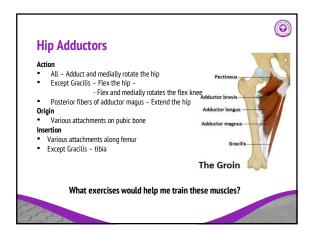
Rectus abdominis Action Flex the vertebral column Tilt the pelvis posteriorly Origin Pubic crest, pubic symphysis Insertion Cartilage of ribs 5,6,7 and xiphoid process What exercises would help me train these muscles?

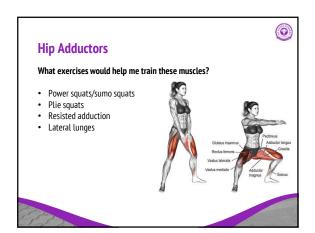


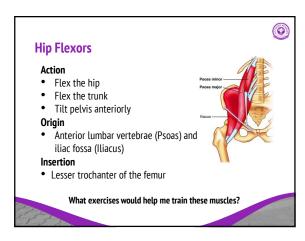


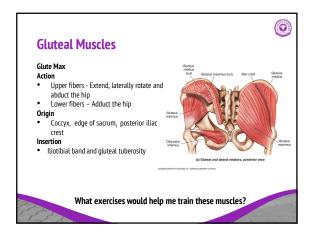


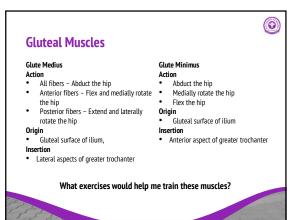


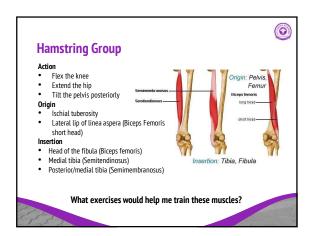


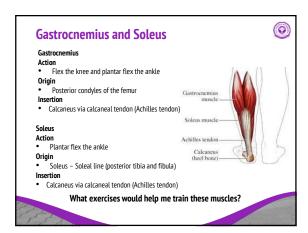


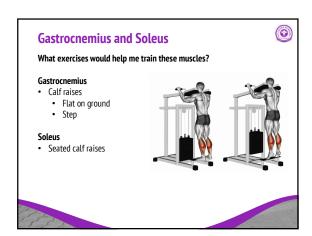


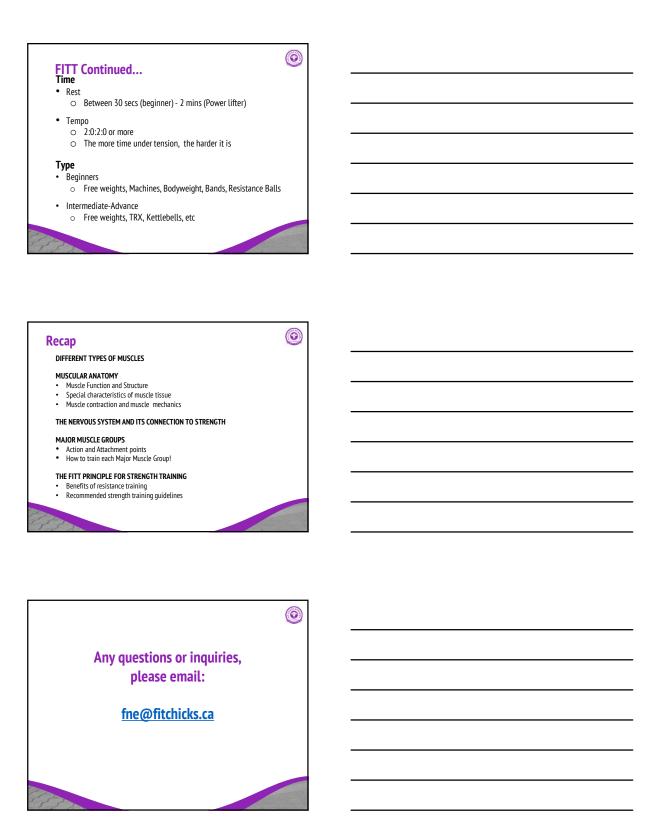












Benefits of doing resistance training

- Helps in body composition in creating lean muscle mass with a higher metabolic resting rate
- Protects bone density and muscle mass, reducing the risk of premature aging
- Improved performance for sport or daily living
- Elevates endorphins, creates a sense of well-being

0

