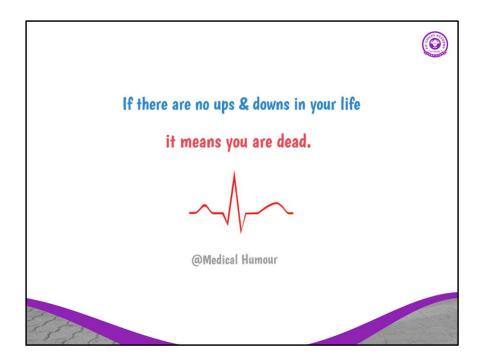


What we are going to cover

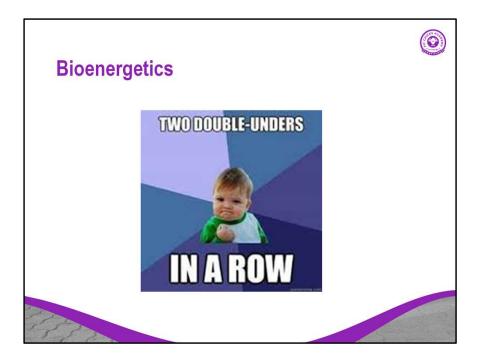
SETICS

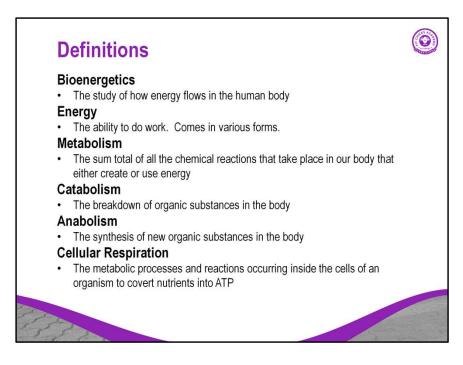
 (\bigcirc)


BIOENERGETICS

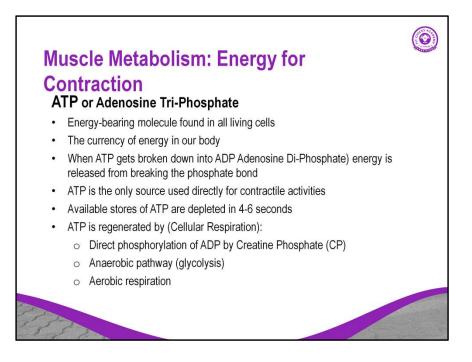
- Muscle Metabolism: The role of ATP
- How energy is created in the Human Body
 Cellular Respiration and the different energy systems
- Burning Fat vs. Burning Carbs
- · Why interval training is so effective
- · Muscle soreness and recovery

CARDIORESPIRATORY CONCEPTS

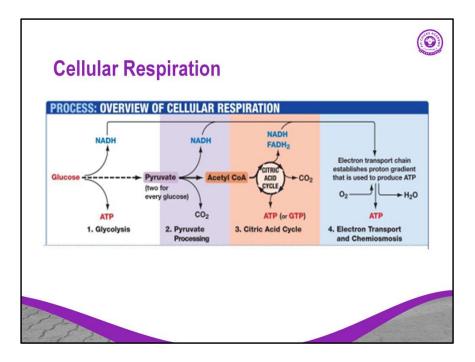

- Anatomy of the Cardiorespiratory System
- · Heart Rate, Blood Pressure, VO2MAX, Stroke Volume, Cardiac Output,
- How to determine your Heart Rate Training Zone
- Training adaptations



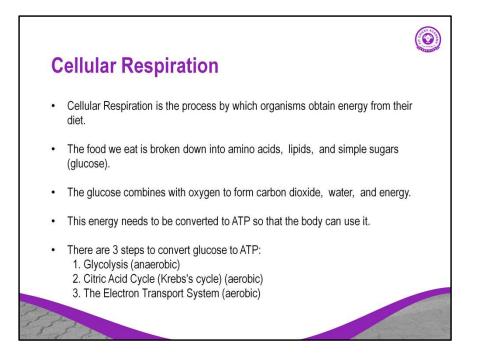
https://me.me/i/if-there-are-no-ups-downs-in-your-life-3079860



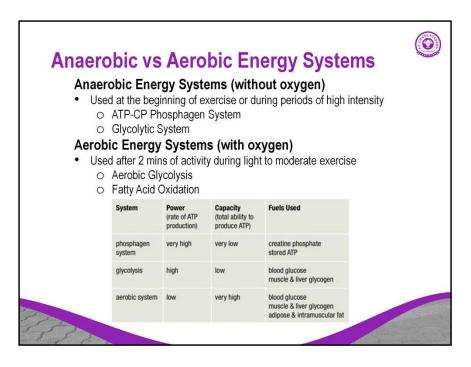
http://kidshealth.org/teen/your_body/body_basics/metabolism.html

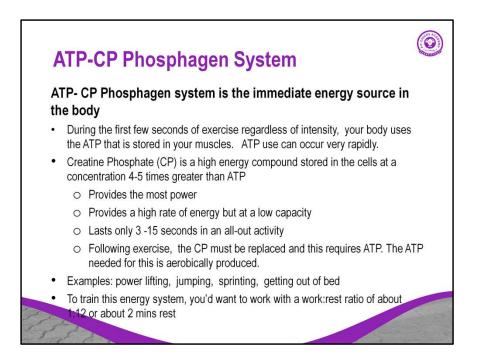

Every living organism needs these metabolic processes to live.

Martini, F.H., Ober, W.C., Bartholomew, E.F., Nath, J.I. (2013). Visual Essentials of Anatomy and Physiology. 559


Catabolism = breaking down - ex. Glycolysis Anabolism = building up - ex. The synthesis of proteins from amino acids

Phosphorylation means adding a phosphorus molecule

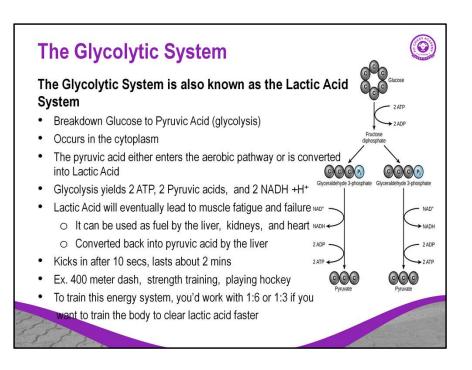

https://biochemistry3rst.wordpress.com/tag/krebs-cycle/


https://biochemistry3rst.wordpress.com/tag/krebs-cycle/

Glycolysis can be both anaerobic and aerobic. It depends on if there is oxygen present or not.

Anaerobic = no oxygen Aerobic = oxygen

https://www.ideafit.com/fitness-library/the-three-metabolic-energy-systems

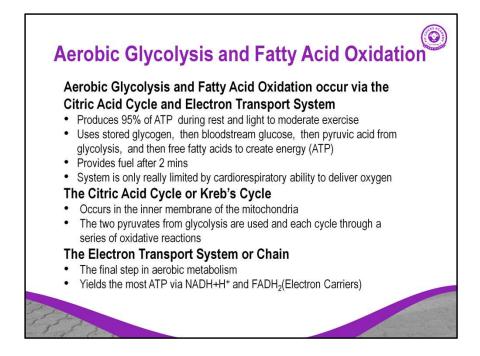


http://www.ptdirect.com/training-design/anatomy-and-physiology/the-atp-pc-system

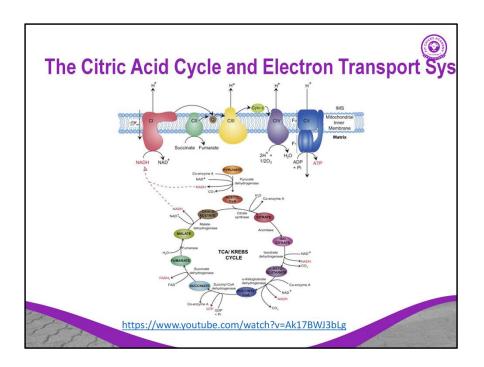
If activity continues beyond this immediate period, the body must rely on other energy systems to produce ATP as the limited stores of both ATP and PC will be exhausted and will need time to replenish.

These stores are replenished after about two minutes rest.

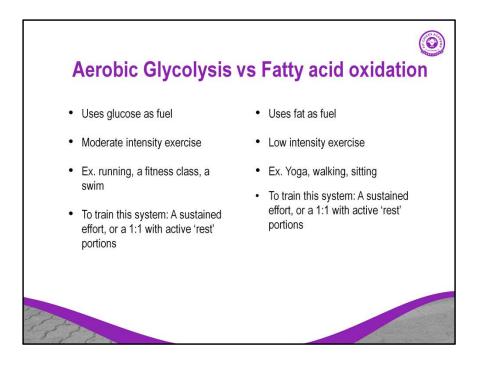
You need about a 1:12 ratio for work to adequate recovery or about 2 mins

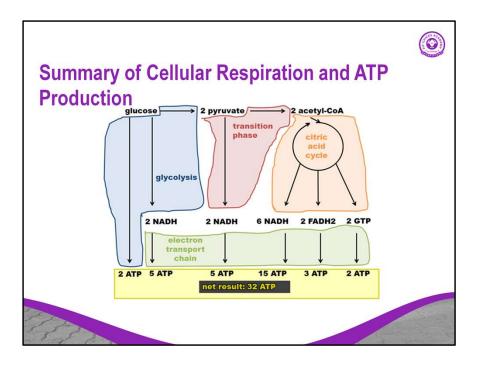

https://i.pinimg.com/originals/2e/65/11/2e6511146ab8eeedac0674bb51847126.jpg

If glucose isn't readily available the body will breakdown glycogen into glucose (Glycogenolysis)


If neither glucose nor glycogen is available the body will form glucose form protein and fat (Gluconeogenesis)

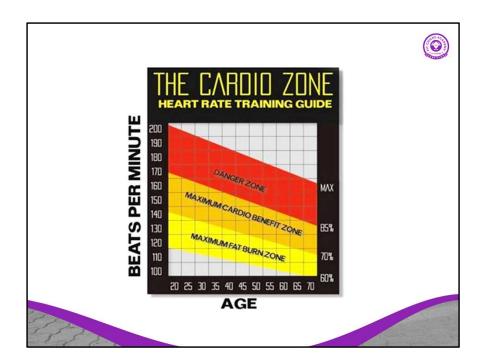
NADH+H⁺ will yield 3 ATP each through the Electron Transport System – Part of the aerobic pathway

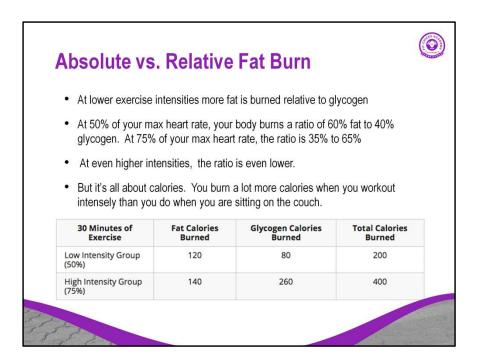

In glycolysis, glucose, a 6-carbon compound, is eventually **broken down** to two 3carbon compounds called pyruvate molecules. Two ATP molecules are invested into this step so that a <u>net gain of two ATP can be made</u>, as well as <u>two pyruvates and two</u> <u>NADH</u>. This process occurs **without the presence of oxygen** in the cytoplasm of cells.



https://www.khanacademy.org/science/biology/cellular-respiration-and-fermentation/overview-of-cellular-respiration-steps/v/overview-of-cellular-respiration

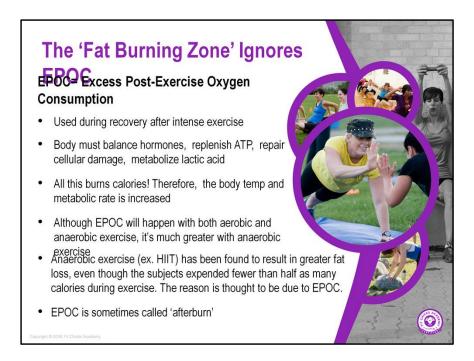
https://www.researchgate.net/figure/Bioenergetics-of-the-electron-transport-chainand-the-TCA-Kerbs-cycle-Pyruvate-is_fig1_233737352

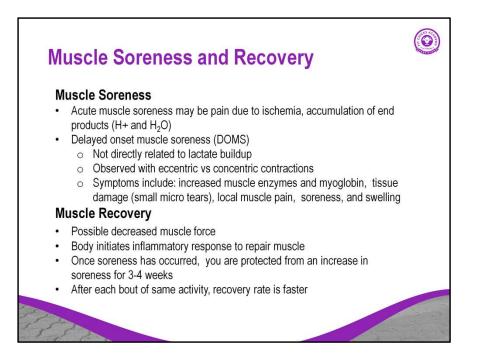

http://www.cureffi.org/wp-content/uploads/2013/11/energy-flow-diagram.png


	50.01000	robic systems		nic system
Characteristics	ATP-CP (alactic)	Anaerobic glycolysis (lactic acid)	Aerobic (glycolysis)	Aerobic (lipolysis)
Duration (predominant)	6-10 seconds	30-60 seconds	2–3 hours	>4 hours
Peak power	2-5 seconds	5-15 seconds	Not applicable	Not applicable
Intensity (% HR _{max})	Not applicable	Not applicable	>75-100%	Rest - 75%
Intensity (% VO _{2max})	Not applicable	Not applicable	>65-100%	Rest - 65%
Perceived exertion	Maximal	Maximal	Moderate-very hard	Very light-moderate
Fuel source(s)	СР	Carbohydrate	Mostly carbohydrate Fat	Mostly fat Carbohydrate
ATP yield (per molecule)	<1	2	36-38	>100
Byproducts	C + P	Lactic acid (Lactate + H*)	$H_20 + CO_2 + heat$	$H_2O + CO_2 + heat$
[Blood lactate] (mM)	Not applicable	>6	2–16	2
Training effect	Alactic power	Alactic power Alactic capacity Lactic power Lactic capacity	Aerobic power Aerobic capacity	Aerobic power Aerobic capacity Fat oxidation
Typical events	100m track sprint	400 m track sprint 100 m freestyle	10 000 m run 40 km TT (cycling)	Ironman triathlon Road cycling (4 + hours)

https://mur0016sportscience.weebly.com/energy-systems.html

ctivities	ATP-PC	Anaerobic Glycolytic	Aerobic
Basketball	60	20	20
Field events (shotput, discuss, javelin)	90	10	0
Golf swing	95	5	0
Gymnastics	80	15	5
Hockey	50	20	30
Rowing	20	30	50
Running (distance)	10	20	70

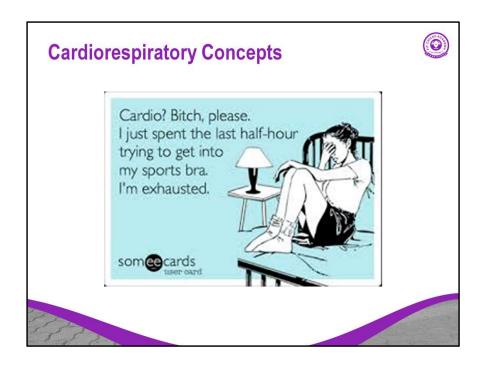

This chart shows the % of which system is used for each activity

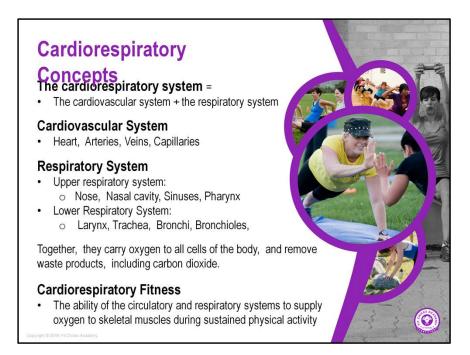

http://www.builtlean.com/2013/04/01/fat-burning-zone-myth/

So if your goal is fat loss, is it better to work out at a lower intensity or higher intensity?

http://en.wikipedia.org/wiki/Excess_post-exercise_oxygen_consumption

https://www.youtube.com/watch?v=SLgNRg3mh6s

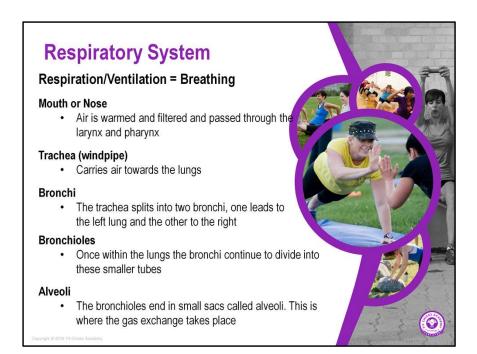

Ischemia - low blood flow

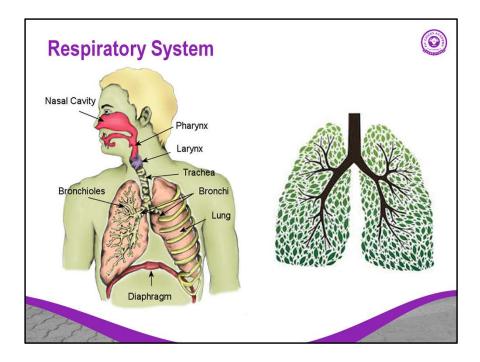

Increase pressure in the muscle which stimulates pain receptors

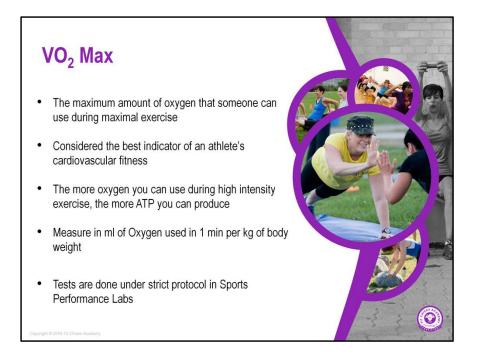
Some muscle enzymes and myoglobin are muscle specific but when the muscle is damaged they find their way into the bloodstream

Myoglobin - the muscles version of hemoglobin, iron binding molecule

Decreased muscle force can persist for several weeks (after running a marathon)

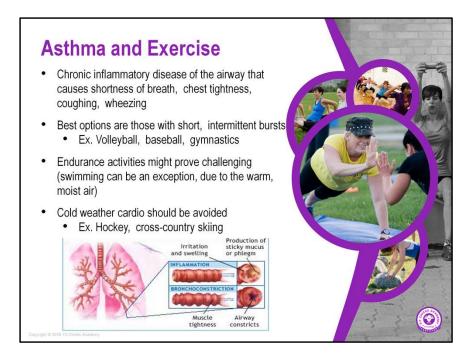



http://en.wikipedia.org/wiki/Cardiorespiratory_fitness


Http://hes.ucfsd.org/gclaypo/repiratorysys.html

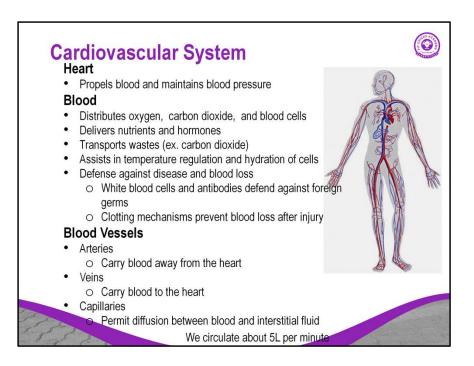
Martini, F.H., Ober, W.C., Bartholomew, E.F., Nath, J.I. (2013). Visual Essentials of Anatomy and Physiology. 559

http://www.teachpe.com/anatomy/respiratory_system.php


http://sportsmedicine.about.com/od/anatomyandphysiology/a/VO2_max.htm

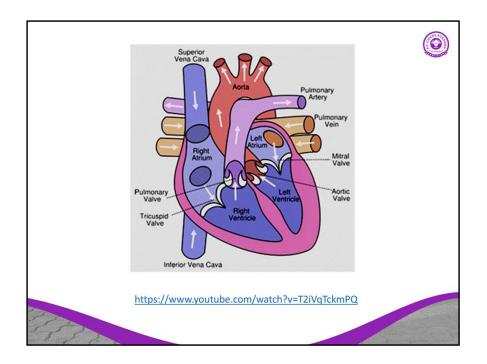
	18-25	26-35	36-45	46-55	56-65	65+
	vears old	vears old	vears old	vears old	vears old	vears old
excellent	>60	>56	>51	>45	>41	>37
good	52-60	49-56	43-51	39-45	36-41	33-37
average	47-51	43-48	39-42	35-38	32-35	29-32
average	42-46	40-42	35-38	32-35	30-31	26-28
average	37-41	35-39	31-34	29-31	26-29	22-25
poor	30-36	30-34	26-30	25-28	22-25	20-21
very poor	<30	<30	<26	<25	.00	0.0
	OXYGEN				<22 DMEN (m	<20 I/kg/min)
	OXYGEN	26-35	E NORMS	46-55	DMEN (m	l/kg/min)
MAXIMAI	OXYGEN	26-35 years old	B NORMS	46-55 years old	DMEN (m 56-65 years old	65+ years old
MAXIMAI	0XYGEN 18-25 years old 56	26-35 years old 52	36-45 years old 45	46-55 years old 40	DMEN (m 56-65 years old 37	65+ years old 32
MAXIMAI excellent good	0XYGEN 18-25 years old 56 47-56 42-46 38-41	26-35 years old 52 45-52 39-44 35-38	36-45 years old 45 38-45 34-37 31-33	46-55 years old 40 34-40 31-33 28-30	56-65 years old 37 32-37	65+ years old 32 28-32 25-27 22-24
MAXIMAI excellent good average	0XYGEN 18-25 years old 56 47-56 42-46 38-41 33-37	26-35 years old 52 45-52 39-44 35-38 31-34	36-45 years old 45 38-45 34-37 31-33 27-30	46-55 years old 40 34-40 31-33 28-30 25-27	DMEN (m 56-65 years old 37 32-37 28-31 25-27 22-24	65+ years old 32 28-32 25-27 22-24 19-22
MAXIMAI excellent good average average	0XYGEN 18-25 years old 56 47-56 42-46 38-41	26-35 years old 52 45-52 39-44 35-38	36-45 years old 45 38-45 34-37 31-33	46-55 years old 40 34-40 31-33 28-30	DMEN (m 56-65 years old 37 32-37 28-31 25-27	65+ years old 32 28-32 25-27 22-24

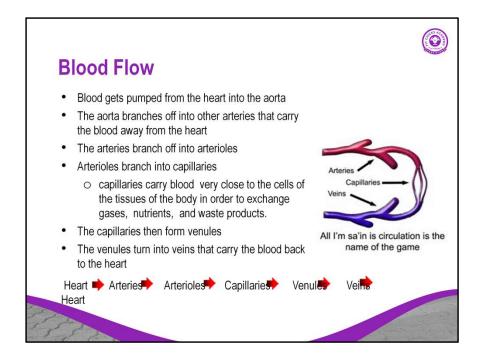
https://endurelite.com/blogs/free-nutrition-supplement-and-training-articles-forrunners-and-cyclists/the-two-things-every-endurance-athlete-should-focus-onimproving-for-optimal-performance-part-1

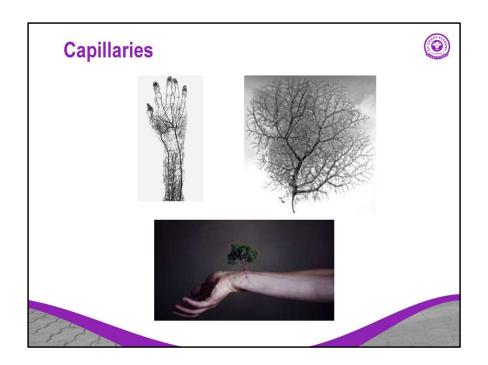

https://www.therunningcenter.com/vo2-max-testing-max-heart-rate-testing/

VO2 max testing can be done on a treadmill or bicycle, and either incline, speed or resistance can be manipulated.

https://www.youtube.com/watch?v=4aK76DoxKGk

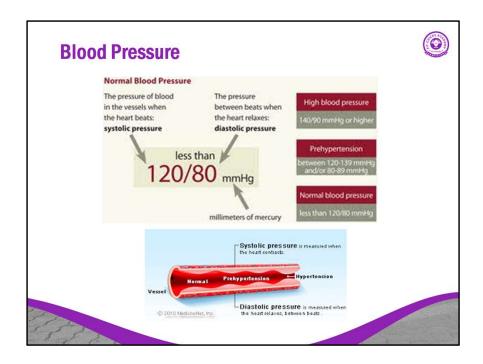

https://asthma.ca/what-is-asthma/

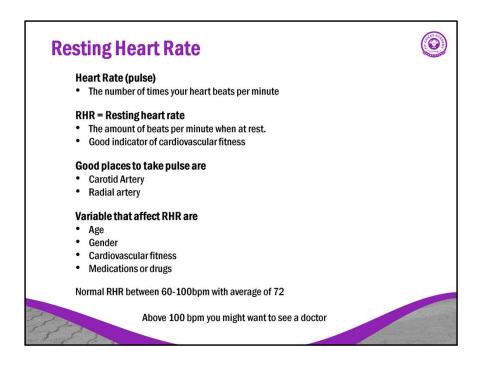



http://www.innerbody.com/image/cardov.html#full-description

Martini, F.H., Ober, W.C., Bartholomew, E.F., Nath, J.I. (2013). Visual Essentials of Anatomy and Physiology. 385

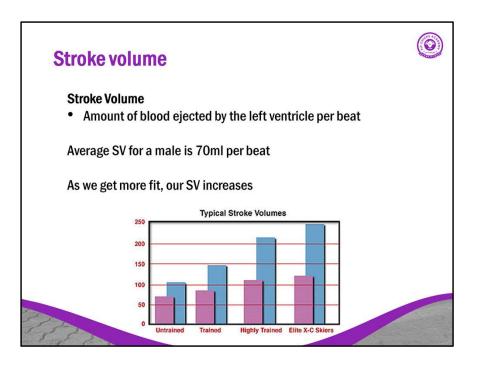
Blood vessels are the body's highways that allow blood to flow quickly and efficiently from the heart to every region of the body and back again.

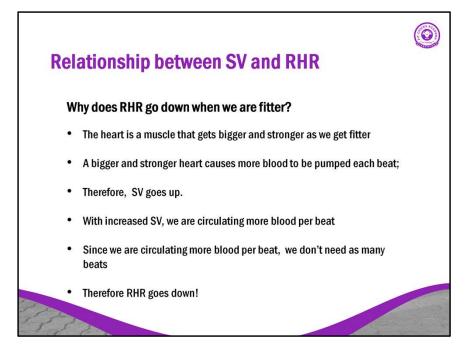


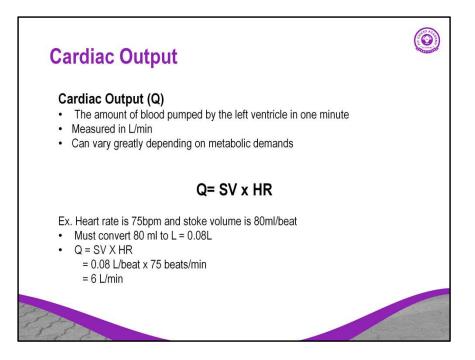


Blood Pressure The pressure caused by the blood against the walls of the arteries or veins Systolic The top number • • Peak pressure When the heart is pumping out blood • Diastolic • The bottom number • Lower pressure When the heart is filling back up with blood • Normal resting Blood pressure is 120/80 When we exercise, our BP goes up temporarily because there is more blood required by the working muscles https://www.youtube.com/watch?v=qWti317qb w 0

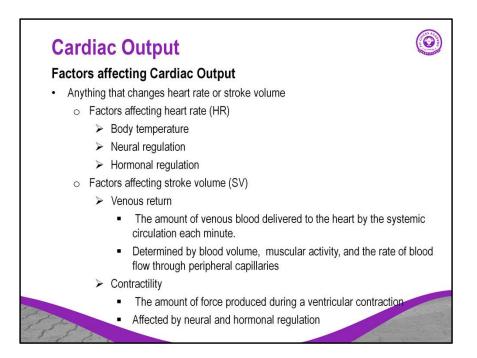
https://www.youtube.com/watch?v=qWti317qb_w




might want to check into heart rate app take a moment for everyone to take their RHR

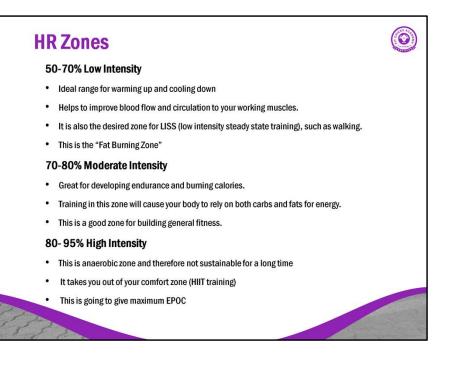


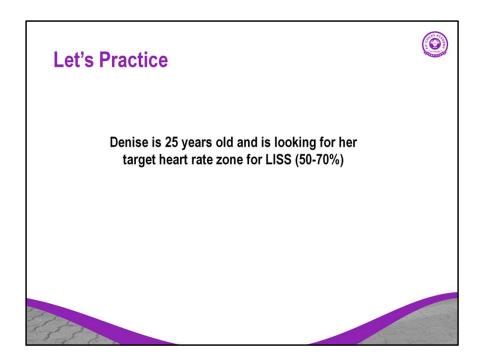
ing Heart Ra							
Resting Heart Ra	te for	MEN					
Age	18-25	26-35	36-45	46-55	56-65	65+	
Athlete	49-55	49-54	50-56	50-57	51-56	50-55	
Excellent	56-61	55-61	57-62	58-63	57-61	56-61	
Good	62-65	62-65	63-66	64-67	62-67	62-65	
Above Average	66-69	66-70	67-70	68-71	68-71	66-69	
Average	70-73	71-74	71-75	72-76	72-75	70-73	
Below Average	74-81	75-81	76-82	77-83	76-81	74-79	
Poor	82+	82+	83+	84+	82+	80+	
Resting Heart Ra	te for	WOMEN	1				
Age	18-25	26-35	36-45	46-55	56-65	65+	
Athlete	54-60	54-59	54-59	54-60	54-59	54-59	
Excellent	61-65	60-64	60-64	61-65	60-64	60-64	
Good	66-69	65-68	65-69	66-69	65-68	65-68	
Above Average	70-73	69-72	70-73	70-73	69-73	69-72	
Average	74-78	73-76	74-78	74-77	74-77	73-76	
Below Average	79-84	77-82	79-84	78-83	78-83	77-84	
Poor	85+	83+	85+	84+	84+	84+	



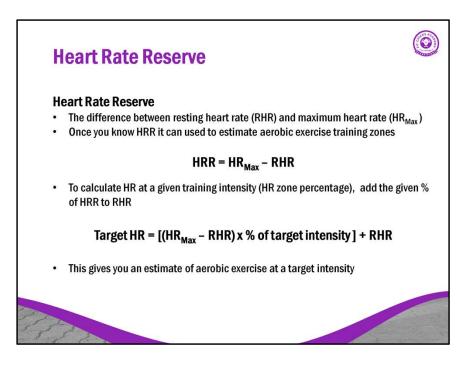
https://en.wikipedia.org/wiki/Stroke_volume

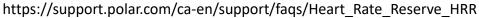
Martini, F.H., Ober, W.C., Bartholomew, E.F., Nath, J.I. (2013). Visual Essentials of Anatomy and Physiology. 450


Martini, F.H., Ober, W.C., Bartholomew, E.F., Nath, J.I. (2013). Visual Essentials of Anatomy and Physiology. 450


Body temp rises – HR goes up Body temp decreases – HR goes down

Sympathetic (fight or flight) regulation increases HR, parasympathetic (rest and digest) decreases HR


Hormones that increase HR – epinephrine and thyroid hormones

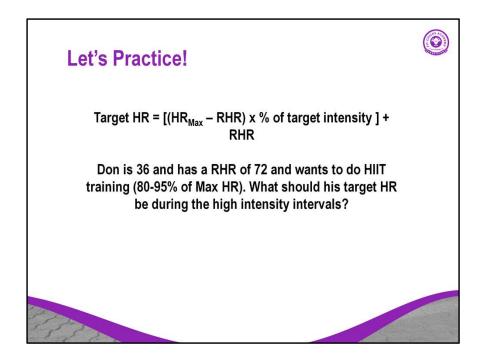

	\bigcirc
Max Heart Rate	
Human heart can only beat 220 x per minute (only a young child)	
HR Max	
• 220 - Age	
To determine a target HR %	
• (220-age) x %	
So let's figure out 55% of my MAX HR (I'm 34)	
• Ex. (220 – Age) x %	
= (220-34) X 55%	
= (186) X 0.55	
= 102bpm	
15-2	

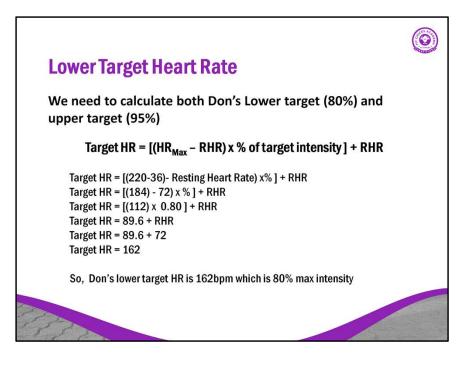
Certain Contraction of the provided of the provid

Using HRH to calculate target intensity will give a more specific heart range for your client because it takes into account resting HR.

For example: Target intensity 70 % HRR for a person with ${\rm HR}_{\rm max}$ 201 bpm and ${\rm HR}_{\rm rest}$ 50 bpm

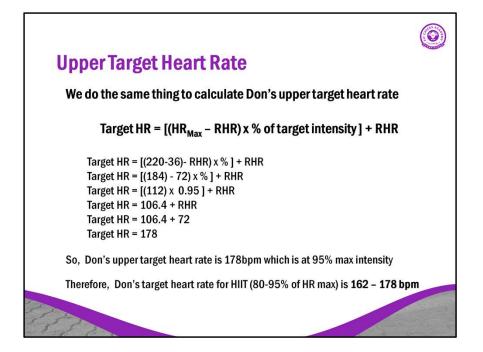
Exercise HR= [(201-50) x 70%] + 50 = (151 x .7) + 50 = 105.7 + 50 Exercise HR=1E5 hpm

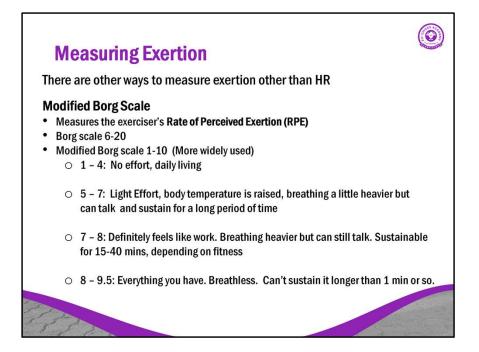

Exercise HR=155 bpm

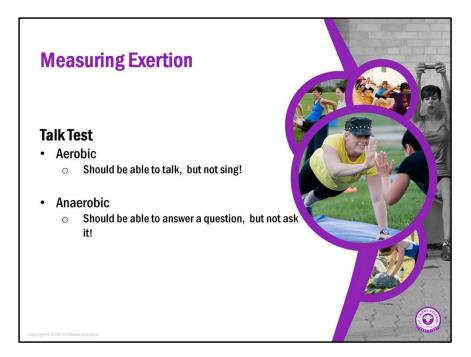

If you didn't use RHR and the heart rate reserve calculation and just calculated a 70% target intensity you would get a different number:

Exercise HR = (220 –age) x 70% = 201 x .70

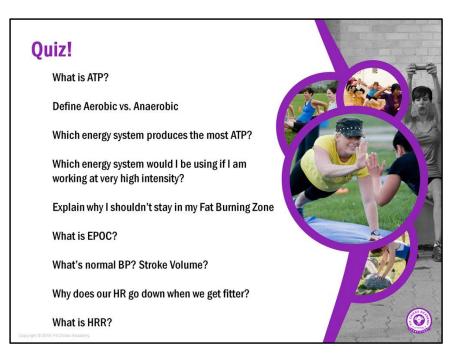
Exercise HR=140 bpm


Without knowing resting heart rate, this persons target HR at 70% would be 140bpm but knowing RHR, their target HR at 70% would actually be 155bpm. If they were just going by max HR then this client would be working at a lower capacity then what they should be.





First we calculate Max heart rate (220-age): Then we calculate HRR ($HR_{Max} - RHR$): Then we calculate % target HR:


Going back to the previous discussion about target HR. If you didn't know Don's RHR then you would just use the (220-age) x Target % which would give you 147bpm. With this as his target, he would be working at a lower capacity and not actually reaching his 80% target.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

0 Recap BIOENERGETICS Muscle Metabolism: the role of ATP • How energy is created in the Human Body • • Cellular Respiration and the different energy systems Interval Training • Burning Fat vs. Burning Carbs • Why interval training so effective • Muscle soreness and recovery • **CARDIORESPIRATORY CONCEPTS** • Anatomy of the Cardiorespiratory System Heart Rate, Blood Pressure, VO2MAX, Stroke Volume, Cardiac Output, • How to determine your Heart Rate Training Zone • • Training adaptations

