

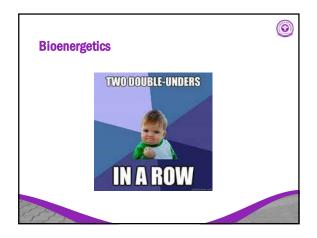
What we are going to cover

BIOENERGETICS

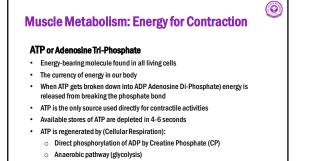
• Muscle Metabolism: The role of ATP

 \bigcirc

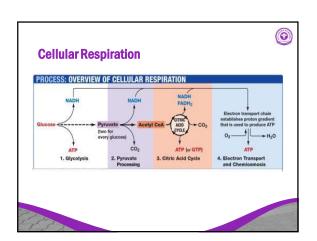
- How energy is created in the Human Body • Cellular Respiration and the different energy systems
- Burning Fat vs. Burning Carbs
- Why interval training is so effective
- Muscle soreness and recovery

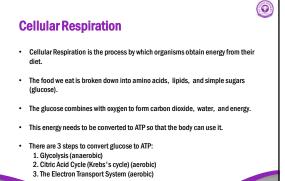

CARDIORESPIRATORY CONCEPTS

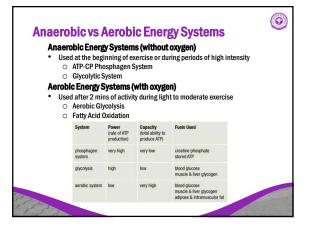
- Anatomy of the Cardiorespiratory System
 Heart Rate, Blood Pressure, VO2MAX, Stroke Volume, Cardiac Output,
- How to determine your Heart Rate Training Zone
- Training adaptations


Definitions

- Bioenergetics
 The study of how energy flows in the human body
- Energy
 The ability to do work. Comes in various forms.
- Metabolism
- The sum total of all the chemical reactions that take place in our body that either create or use energy


 \bigcirc

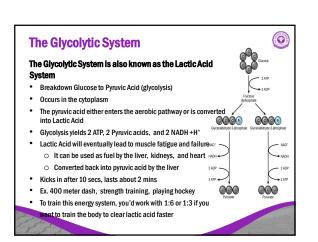

- Catabolism The breakdown of organic substances in the body
- Anabolism
- The synthesis of new organic substances in the body Cellular Respiration
 The metabolic processes and reactions occurring inside the cells of an
- - organism to covert nutrients into ATP

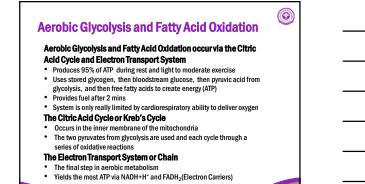


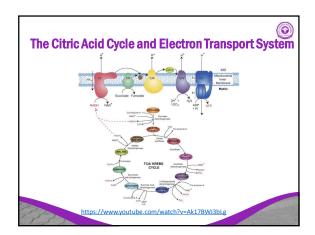
o Aerobic respiration

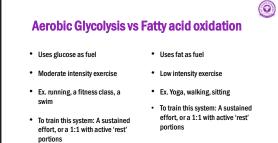
ATP-CP Phosphagen System

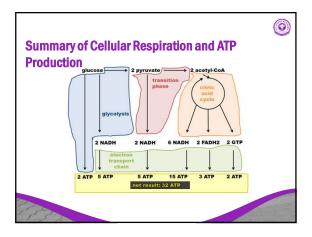
ATP- CP Phosphagen system is the immediate energy source in the body

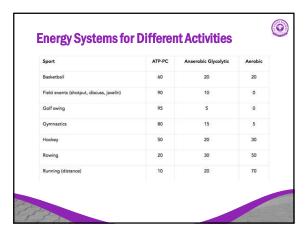

 During the first few seconds of exercise regardless of intensity, your body uses the ATP that is stored in your muscles. ATP use can occur very rapidly.

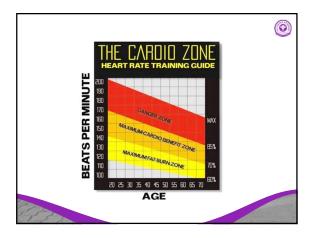

 \bigcirc


- Creatine Phosphate (CP) is a high energy compound stored in the cells at a concentration 4-5 times greater than ATP
 - $\,\circ\,\,$ Provides the most power

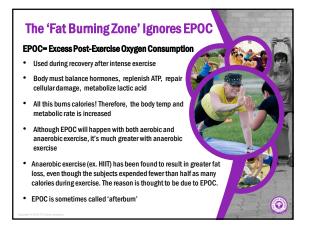

1:12 or about 2 mins rest


- $\circ~$ Provides a high rate of energy but at a low capacity
- $\odot~$ Lasts only 3 -15 seconds in an all-out activity
- Following exercise, the CP must be replaced and this requires ATP. The ATP needed for this is aerobically produced.
- Examples: power lifting, jumping, sprinting, getting out of bed
 To train this energy system, you'd want to work with a work:rest ratio of about





	Anasi	robic systems	Aerol	bic system
Characteristics	ATP-CP (alactic)	Anaerobic glycolysis (lactic acid)	Aerobic (glycolysis)	Aerobic (lipolysis)
Duration (predominant)	6-10 seconds	30-60 seconds	2-3 hours	>4 hours
Peak power	2-5 seconds	5-15 seconds	Not applicable	Not applicable
Intensity (% HR _{max})	Not applicable	Not applicable	>75-100%	Rest - 75%
Intensity (% VD _{2max})	Not applicable	Not applicable	>65-100%	Rest - 65%
Perceived exertion	Maximal	Maximal	Moderate-very hard	Very light-moderate
Fuel source(s)	CP	Carbohydrate	Mostly carbohydrate Fat	Mostly fat Carbohydrate
ATP yield (per molecule)	<1	2	36-38	>100
Byproducts	C + P	Lactic acid (Lactate + H [*])	$H_2O + OO_2 + heat$	H ₂ O + CO ₂ + heat
[Blood lactate] (mM)	Not applicable	>6	2-16	4
Training effect	Alactic power	Alactic power Alactic capacity Lactic power Lactic capacity	Aerobic power Aerobic capacity	Aerobic power Aerobic capacity Fat exidation
Typical events	100 m track sprint	400 m track sprint 100 m freestyle	10000 m run 40 km TT (cycling)	Ironman triathlon Road cycling (4 + hours)


Absolute vs. Relative Fat Burn

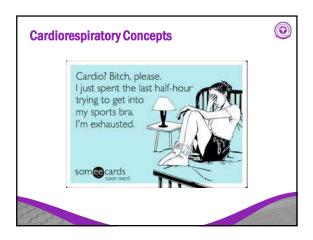
• At lower exercise intensities more fat is burned relative to glycogen

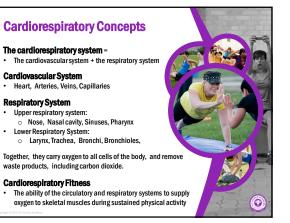
 At 50% of your max heart rate, your body burns a ratio of 60% fat to 40% glycogen. At 75% of your max heart rate, the ratio is 35% to 65% \bigcirc

- At even higher intensities, the ratio is even lower.
- But it's all about calories. You burn a lot more calories when you workout intensely than you do when you are sitting on the couch.

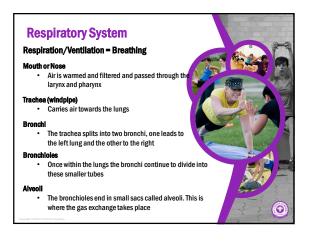
		Burned	Burned
ow Intensity Group 50%)	120	80	200
ligh Intensity Group 75%)	140	260	400

Muscle Soreness and Recovery

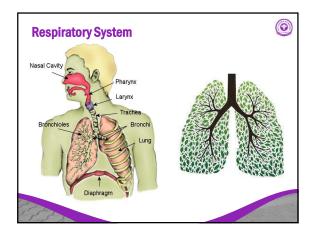

Muscle Soreness

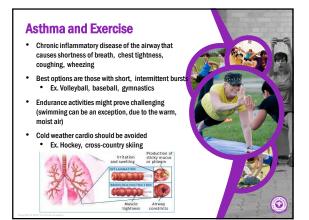

- Acute muscle soreness may be pain due to ischemia, accumulation of end products (H+ and H₂O)
 Delayed onset muscle soreness (DOMS)
- Not directly related to lactate buildup
- Observed with eccentric vs concentric contractions
- Symptoms include: increased muscle enzymes and myoglobin, tissue
- damage (small micro tears), local muscle pain, soreness, and swelling

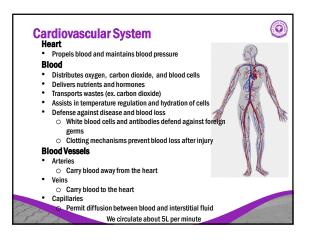
0

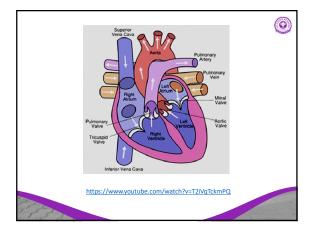

Muscle Recovery

- Possible decreased muscle force
 Body initiates inflammatory response to repair muscle
- Once soreness has occurred, you are protected from an increase in soreness
- for 3-4 weeks
- After each bout of same activity, recovery rate is faster

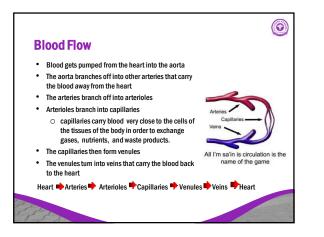


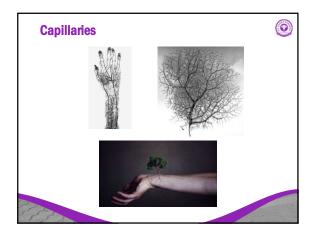






	18-25	26-35	36-45	46-55	56-65	65+
		vears old	vears old		vears old	vears old
excellent	>60	>56	>51	>45	>41	>37
good	52-60	49-56	43-51	39.45	36-41	33-37
average	47-51	43-48	39-42	35-38	32-35	29-32
average	42-46	40-42	35-38	32-35	30-31	26-28
average	37-41	35-39	31-34	29-31	26-29	22-25
poor	30-36	30.34	26.30	25,28	22-25	20-21
very poor	<30	<30	<28	<25	<22	<20
MAXIMAL	OXYGEN					La
MAXIMAL	18-25	26-35 years old	36-45 years old	46-55	DMEN (m	l/kg/min) 65+ vears old
MAXIMAL excellent	18-25	26-35	36-45	46-55	56-65	65+
	18-25 years old	26-35 years old	36-45 years old	46-55 years old	56-65 years old	65+ years old
excellent	18-25 years old 56	26-35 years old 52	36-45 years old 45	46-55 years old 40	56-65 years old 37	65+ years old 32
excellent good	18-25 years old 56 47-56	26-35 years old 52 45-52	36-45 years old 45 38-45	46-55 years old 40 34-40	56-65 years old 37 32-37	65+ years old 32 28-32
excellent good average	18-25 years old 56 47-56 42-46 38-41 33-37	26-35 years old 52 45-52 39-44 35-38 31-34	36-45 years old 45 38-45 34-37 31-33 27-30	46-55 years old 40 34-40 31-33 28-30 25-27	56-65 years old 37 32-37 28-31 25-27 22-24	65+ years old 32 28-32 25-27 22-24 19-22
excellent good average average	18-25 years old 56 47-56 42-46 38-41	26-35 years old 52 45-52 39-44 35-38	36-45 years old 45 38-45 34-37 31-33	46-55 years old 40 34-40 31-33 28-30	56-65 years old 37 32-37 28-31 25-27	65+ years old 32 28-32 25-27 22-24

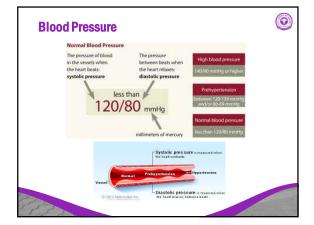


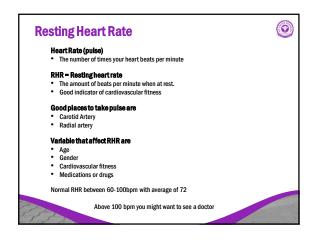


Blood Pressure

The pressure caused by the blood against the walls of the arteries or veins

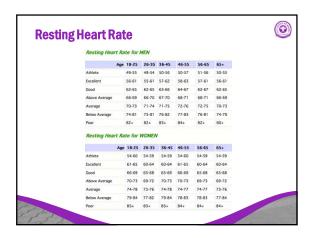
Systolic

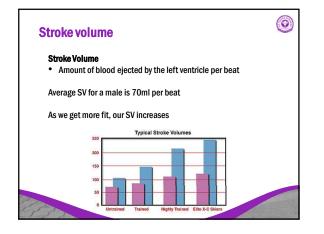

- The top number Peak pressure
- When the heart is pumping out blood


Diastolic

- The bottom number
- Ine outcommany of the content of the conte Normal resting Blood pressure is 120/80

When we exercise, our BP goes up temporarily because there is more blood required by the working muscles https://www.youtube.com/watch?v=qWti317qb_w





Relationship between SV and RHR

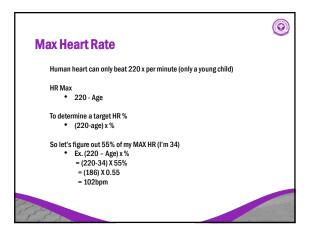
Why does RHR go down when we are fitter?

- The heart is a muscle that gets bigger and stronger as we get fitter
- A bigger and stronger heart causes more blood to be pumped each beat;
- Therefore, SV goes up.
- With increased SV, we are circulating more blood per beat
- Since we are circulating more blood per beat, we don't need as many beats
- Therefore RHR goes down!

Cardiac Output

0

0

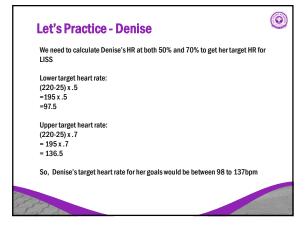

Cardiac Output (Q)

- The amount of blood pumped by the left ventricle in one minute
 Measured in L/min
- Can vary greatly depending on metabolic demands

Q= SV x HR

- Ex. Heart rate is 75bpm and stoke volume is 80ml/beat • Must convert 80 ml to L = 0.08L
 - Q = SV X HR
- = 0.08 L/beat x 75 beats/min
- = 6 L/min

\bigcirc **Cardiac Output Factors affecting Cardiac Output** Anything that changes heart rate or stroke volume o Factors affecting heart rate (HR) Body temperature > Neural regulation > Hormonal regulation • Factors affecting stroke volume (SV) Venous return The amount of venous blood delivered to the heart by the systemic circulation each minute. Determined by blood volume, muscular activity, and the rate of blood • flow through peripheral capillaries > Contractility The amount of force produced during a ventricular contraction Affected by neural and hormonal regulation

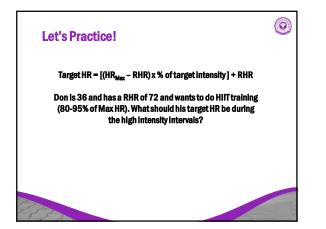

- Ideal range for warming up and cooling down
- Helps to improve blood flow and circulation to your working muscles.
- It is also the desired zone for LISS (low intensity steady state training), such as walking.

 \bigcirc

- This is the "Fat Burning Zone"
- 70-80% Moderate Intensity
- Great for developing endurance and burning calories.
- Training in this zone will cause your body to rely on both carbs and fats for energy.
- This is a good zone for building general fitness.
- 80-95% High Intensity

- This is anaerobic zone and therefore not sustainable for a long time
- It takes you out of your comfort zone (HIIT training)
 This is going to give maximum EPOC

Heart Rate Reserve


Heart Rate Reserve


HRR = HR_{Max} - RHR

- To calculate HR at a given training intensity (HR zone percentage), add the given % of HRR to RHR

Target HR = [(HR_{Max} - RHR) x % of target intensity] + RHR

This gives you an estimate of aerobic exercise at a target intensity

So, Don's lower target HR is 162bpm which is 80% max intensity

Upper Target Heart Rate

We do the same thing to calculate Don's upper target heart rate

Target HR = [(HR_{Max} - RHR) x % of target intensity] + RHR

 \bigcirc

0

 $\label{eq:arget} \begin{array}{l} \mbox{Target} \mbox{HR} = [(220-36)-\mbox{RHR}) x \, \% \] + \mbox{RHR} \\ \mbox{Target} \mbox{HR} = [(184) - 72) x \, \% \] + \mbox{RHR} \\ \mbox{Target} \mbox{HR} = [(112) x \, 0.95] + \mbox{RHR} \\ \mbox{Target} \mbox{HR} = 106.4 + \mbox{RH} \\ \mbox{Target} \mbox{HR} = 106.4 + \mbox{72} \\ \mbox{Target} \mbox{HR} = 178 \end{array}$

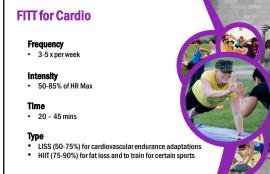
So, Don's upper target heart rate is 178 bpm which is at 95% max intensity

Therefore, Don's target heart rate for HIIT (80-95% of HR max) is **162 - 178 bpm**

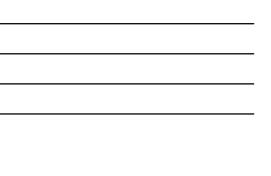
Measuring Exertion

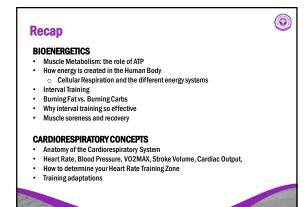
There are other ways to measure exertion other than HR

Modified Borg Scale


- Measures the exerciser's Rate of Perceived Exertion (RPE)
- Borg scale 6-20
 Modified Borg scale 1-10 (More widely used)
- 1 4: No effort, daily living
- $\odot~$ 5 7: Light Effort, body temperature is raised, breathing a little heavier but can talk and sustain for a long period of time
- 7 8: Definitely feels like work. Breathing heavier but can still talk. Sustainable for 15-40 mins, depending on fitness
- 8 9.5: Everything you have. Breathless. Can't sustain it longer than 1 min or so.

Measuring Exertion


Talk Test


- Aerobic • Should be able to talk, but not sing!
- Anaerobic
- Should be able to answer a question, but not as it!

