

The FITT Principle

Frequency

• How many days per week?

Intensity

• How hard?

- Time
- How long?

Туре

• What kind of exercise?

The FITT Principle - Example

For an experienced runner (she's been running 3-5 x a week for 1 year) who wants to get a Personal Best on a 5K this spring.

The FITT Principle – Example

For an experienced runner with a 5k PB goal

Frequency

5 days a week

Intensity

Varied but mostly High!

varied bat mostly ri

Time

• Approx. 30 - 40mins

Туре

• Running

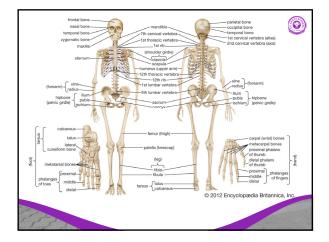
0

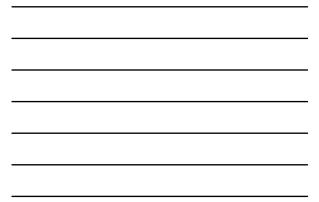
Facts about the Skeletal

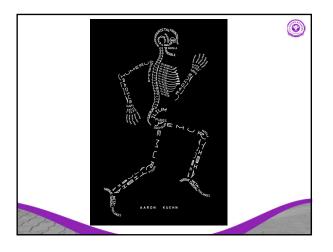
- Human adult skeleton has 206 bones (we used to have 300!)
- We achieve maximum bone density at age 30
- Female skeleton has a larger pelvic capacity but is otherwise usually smaller
- Our bones are alive!
 - Bones are highly vascular
 - Bones undergo extensive remodeling throughout life
 - Bones respond to stress and grow thicker and stronger with physical activity and become thin and brittle with inactivity

Components of the Skeleton

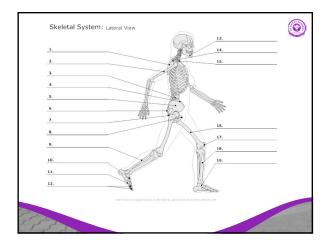
- Axial Skeleton (keeps you upright!)
 - $\circ\;$ Skull, thoracic cage, vertebral column, and various cartilages $\circ~$ Forms the longitudinal axis of the body

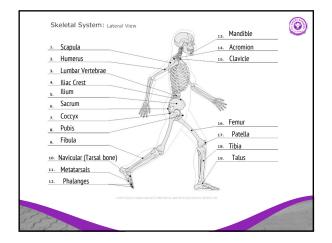

 \bigcirc

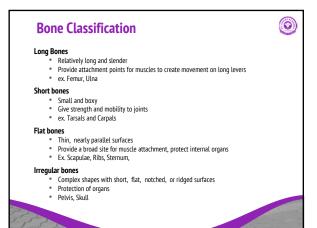

0

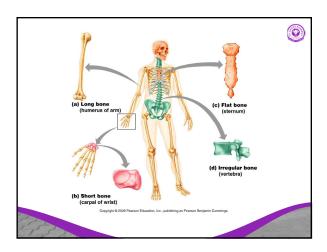

- o 80 bones
- $\circ\;$ Supports and protects the brain, spinal cord, and organs in the ventral body cavity o Provides an extensive surface for the attachment of muscles
- Appendicular Skeleton (helps you move!)
 - Limbs and girdles (pectoral and pelvic)
 - \circ 126 bones
- The skeletal system also includes:
 - Cartilage- Flexible supporting framework
 - Tendons Connects bones to muscles
 - $\circ~$ Ligaments Connects bones to other bones

Essential Functions of the Skeleton/Bone


- 1. Protection of organs (skull, ribs, etc!)
- 2. Structure and shape
 - Endormorphs Apple or pear shape
 - Ectomorphs Tall and thin
 - Mesomorphs Short and muscular
- 3. Movement
 - Muscles pull on bones to create movement at joints
- 4. Red Blood cell Production
- 5. Mineral Storage
- 6. Endocrine Regulation (Bone Only)







Bone Markings

Bulges, depressions, and holes

- Sites of attachments for muscles, ligaments, and tendons
- Joint surfaces
- Conduits for blood vessels and nerves

Projections:

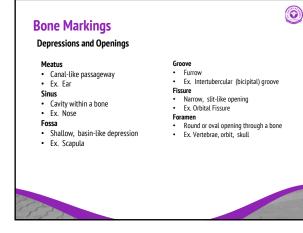
- : Spine – sharp, slender projection Process – any bony prominence
- .

- Head bony expansion carried on a narrow neck
 Facet smooth, nearly flat articular surface
- Frojections:

 Sites of muscle and ligament attachments

 Tuberosity rounded projection

 Crest narrow, prominent ridge


 Trochanter large, blunt irregular surface

 Line narrow ridge of bone

 Tubercle small rounded projection

 Epicondyle raised area above condyle

How Exercise Affects Bones

0

- . .
- Bones are living tissue! Weight-bearing activities put stress on the bone causing new tissue to form, making our bones denser and therefore stronger
 - Best exercises include: o dancing
 - o running

.

- lifting weights
 Exercises that are NOT as good:
 - bicycling
 - o swimming
- Bone strengthening is critical during childhood and the teens as that is when the . biggest gains in bone development happen. However, as we age, our bones will naturally become less dense. We must maintain the bone density to reduce the risk of osteoporosis

Joint Structure and Movement

Joint

- Also known as an Articulation
- Where bones meet
- Where movement occurs
- Varies depending on the anatomical structure of the joint
- Articulations are categorized by their range of motion (ROM)

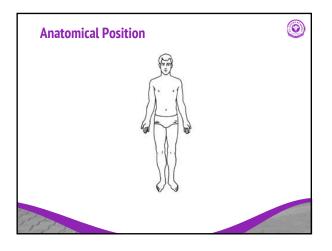
Range of motion (ROM)

• The amount of movement permitted at the joint

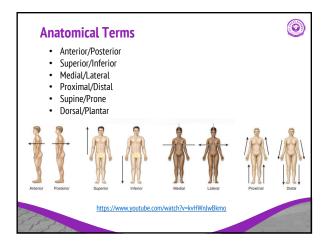
Functional Category (degree of movement)	Structural Category	Description	Example
Synarthrosis (no movement)	Fibrous Suture	A fibrous connection plus interlocked surfaces	Skull, teeth in sockets
	Fibrous Gomphosis	A fibrous connection plus insertion in a boney socket	Between the teeth and jaws
	Cartilaginous Synchondrosis	Interposition of a cartilage plate	Between the first rib and sternum
Amphiarthrosis (little movement)	Fibrous Syndesmosis	Bones are connected by a ligament	Between the tibia and fibula (inferior joint)
	Cartilaginous Symphysis	Bones are connected by a wedge or pad of fibrocartilage	Between the right and left halves of the pelvis
Diarthrosis (free movement)	Synovial	Bounded by joint capsules, contain synovial fluid	knees, ankles, shoulders (Subdivided by ROM)

Туре	Details	Example
Hinge	Back and forth	Knees, Elbows
Condyloid	Back and forth and side to side	Wrists, Ankles
Ball and Socket	All planes of movement	Shoulders, Hips

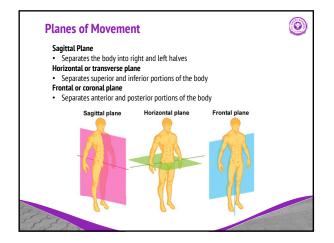
- Synovial fluid lubricates the joint Physical activity encourages circulation of the fluid
- Blood flow increases throughout the body, including the joints

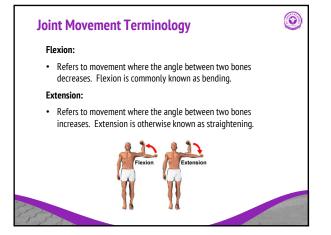

 The synovial membrane is exposed to a steady supply of nourishing oxygen and nutrients
- Nutrients circulate to the joint
 - Weight bearing exercises force water molecules in/out of the cartilage like a sponge bringing oxygen and nutrients to the joint

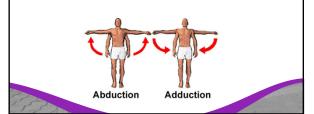
0

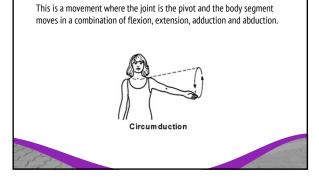

- Joint-repair genes are switched on

 Joint movement activates genes associated with rebuilding cartilage
- Cellular waste is removed
 - Exercise triggers autophagy a biological process where damaged cells in the joint are broken down and removed
- Muscle is built


- Exercise strengthens the muscles, ligaments and tendons surrounding the joints
 These structures act like a brace to protect and lessen pressure on weakened joints




ABduction and ADduction


0

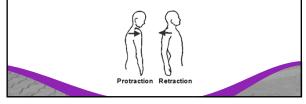
Abduction:

- Is movement of a body segment away from the midline of the body. Adduction:
- Is movement of a body segment toward the midline of the body.

Circumduction

Protraction and Retraction

Protraction:

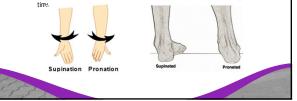

• This is forward movement of the scapula that results in 'hunching' of the shoulders.

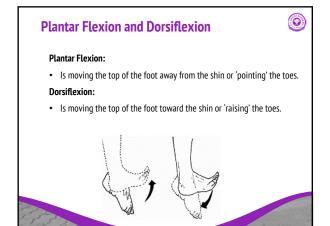
0

0

Retraction:

• This is backward movement of the scapula as they pull together to 'square' the shoulders and push the chest out.


Supination and Pronation

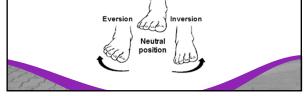

Supination:

- Hand movement so the palm of the hand faces upward or forward (anteriorly).
- Foot combination of inversion, plantar flexion and adduction of the foot occurring at the same time.

Pronation:

- Hand movement so the palm of the hand faces downward or backward (posteriorly).
- Foot combination of eversion, dorsiflexion and abduction of the foot occurring at the same

Inversion:

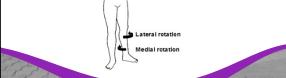

• Is the movement of the foot to bring the sole of the foot to face inward.

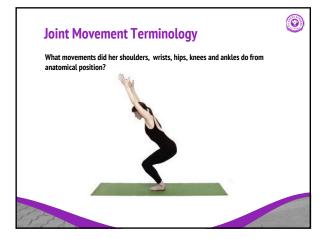
0

0

Eversion:

• Is the movement of the foot to bring the sole of the foot to face outward.




Medial and Lateral Rotation

Medial (Internal) Rotation: • The movement of a body segment where the front (anterior) of the segment rotates medially (inwards) towards the midline of the body.

Lateral (External) Rotation:

• The movement of a body segment where the front (anterior) of the segment rotates laterally (outwards) away from the midline of the body.

Flexibility

What is flexibility?
The ability of a muscle or group of muscles to lengthen passively through a range of motion
Known as 'static stretching'

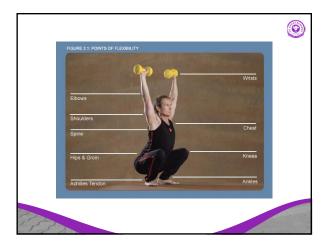
0

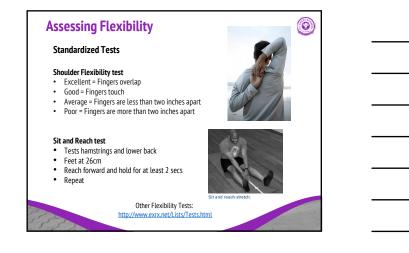
- Mobility

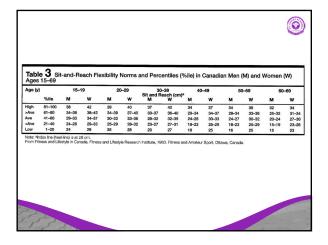
 The ability to move a joint actively through a range of motion.

 Know as dynamic stretches

 Often done by athletes prior to their workout.




Benefits of Flexibility Training


- Improved ROM (Range of Motion)/Mobility at joints
- Increase in athletic performance and helps in daily living
- Decrease risk of injury
- Better posture and possible relief of back pain
- Feelings of tension release, relaxation and restoration

NOTE: There is no scientific evidence to prove that stretching aids in exercise-induced muscle soreness or recovery

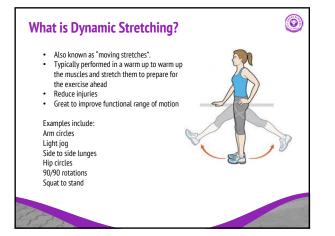
FITT for Flexibility Training

Frequency

It's recommended that you perform flexibility training once a day for 3-7 days a week Ideally, flexibility training should be performed AFTER the • workout, as the muscles are warm and most pliable

Intensity

Your flexibility program should feel like slight tension with NO PAIN. It should never hurt!


Time

 Hold each stretch for a minimum of 30 seconds (or 6 deep breaths)

- Static stretching •
- Mobility/Dynamic stretching It is recommended that everyone does flexibility training as .
- part of their daily routine Athletes may choose to incorporate some mobility training .
- prior to their workout.

0

Advancing a Flexibility Program

- Hold stretch for longer
- Go deeper
- Change your relationship to gravity
 Standing hip stretch vs a lying down 'Figure 4' to a Pidgeon pose
- Add multiple joints O Stretching your triceps while you do a hip flexor stretch
- Introducing some light resistance from a partner
- Add a balance element
- Lying quadriceps vs standing quadriceps

0

 \bigcirc

 \bigcirc

Flexibility Resources

- Strength Training Anatomy:p. 60: The shoulder (Deltoids)
- p. 63 The Chest (Pectoralis Major)
- p. 89 The Back (Latissimus Dorsi)
- p. 120-121 Neck and Shoulders (Upper Trapezius, Deltoids)
- p.139 Quadriceps
- p. 163 Glutes and Hamstrings
- Yoga poses by Anatomy: <u>http://www.yogajournal.com/category/anatomy/</u>
- Becoming a Supple Leopard by Dr. Kelly Starrett

Recap

INTRODUCTION TO THE FITT PRINCIPLE

SKELETAL ANATOMY

- Know your bones! Review your articulations and Anatomical terms.
- FLEXIBILITY
- Benefits of Flexibility Training
 Assessing Flexibility
- Assessing Flexibility
 Designing a Flexibility Training Program

WHAT'S COMING UP IN NEXT CLASS?

MUSCLES!!

